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Abstract. We show that the problem of a random walk with a boundary attractive potential
may be mapped onto the free massive bosonic quantum field theory with a defect line. This
mapping allows us to recover the statistical properties of random walks by using boundary
S-matrix and form factor techniques.

1. Introduction

The problem of the random walk in the presence of a boundary line near the so-called
compensation pointfor long chains was solved many years ago by using standard statistical
mechanics methods (see [1] and references therein). It is nevertheless worth reconsidering
this model in the light of recent developments in boundary quantum field theory [2], in
order to understand in a deeper way the connection between the classical configurations of
chains and the Green functions in the corresponding quantum field theory model. In this
paper, we will show that the statistical problem of the 2D random walk with a boundary
line can be mapped onto a bosonic quantum field theory with a defect line. Namely, we
will see that in order to derive the statistical behaviour of the random walk in the presence
of a boundary condition, one has to treat the boundary not as a pure classical object but as a
quantum defect line in the corresponding free massive boson model, where both reflection
and transmission amplitudes are needed. As a by-product of our results, we show that the
sum of the aforementioned amplitudes plays the role of the boundaryS-matrix for the free
massive bosonic quantum field theory in half-plane, such that a definition of a boundary
state for this problem can be used to compute the quantities we are interested in.

The quantum field theory approach presented in this paper is of value in analysing the
analogous problem with the random walk substituted by the self-avoiding walk. We would
like to remind that in the bulk, many geometrical quantities of the self-avoiding walk can
be obtained by using anS-matrix approach [3, 4], relying on the relationship between self-
avoiding walks and theO(n) model forn → 0 [5]. This relationship has already been used
to discuss several interesting aspects in the presence of a boundary condition‡.

† E-mail: angelo@sissa.it
‡ Fendley and Saleur [6] have recently conjectured the exact boundaryS-matrix for the self-avoiding walk, by
using an analogy with the corresponding amplitude of theKondo problem. It would be interesting to have a direct
derivation of this quantity as a solution of the functional equations satisfied by the boundaryS-matrix.
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2. The random walk with boundary

In this section, we will review some results of the random walk with a boundary in order to
establish the correspondence with the language of quantum field theory. We closely follow
the formulation given in [7] (for the bulk problem, see [8] and [9]).

Let us initially consider the simplest model: the one-dimensional random walk on the
lattice, with the walker confined to move only on the positive half-linex > 0. With a
potential

V =
{

ε if x = 0

0 if x > 1
(1)

the partition function for the configurations is given by

ZV (x, x0; N) =
∞∑

n0=0

an0 Z(x, x0; N; n0) (2)

wherea ∼ e−ε/kT andn0 is the number of times a given pathsits on the origin. The partition
function Z on the right-hand side of (2) counts the number of different configurations, in
the half-line without potential, of a chain of lengthN with fixed ends (x, x0) and which
sits n0 times in the origin. By using theimages method[10], this expression can be given
the following form:

ZV (x, x0; N) = Zb(x, x0; N; n0 = 0) + 2
∞∑

n0=1

(a

2

)n0

Zb(x, x0; N; n0) (3)

whereZb is the partition function in the bulk

Zb(x; N) =
N∑

n=0

(
N

n

)
δx,N−2n .

For ε < 0, there exists a critical temperatureTc such that forT = Tc we getac = 2. This
value of the temperature defines the so-calledcompensation point, where the walker does
not feel any driving force, neither the (entropic) repulsion nor the (energetic) attraction. In
fact, for a = 2 equation (3) gives

ZV (x, x0 = 0; N) = 2Zb(x, x0 = 0; N)

thus showing that the statistical properties at this temperature are the same as in the bulk.
For T > Tc, we observe a preference for the walker to escape from the potential well, i.e.
the favourite configurations are those which end far away from the boundary. This will be
called thenon-adsorbed phaseof the random walk. In contrast, forT < Tc the favourite
configurations are those approaching the boundary with a low probability to escape. This
will be called theadsorbed phase.

The existence of two distinct phases of the random walk and a critical point in between
can be also established in the case of two-dimensional random walk with boundary [7]. In
the continuum limit, in order to mimic the boundary around thecompensation point, the
potential can be chosen as

W =


∞ if x 6 0

< 0 if 0 < x < b

0 if x > b

(4)
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and independent from the coordinate parallel to the boundary line, sayy. Since the two-
dimensional partition function of the random walk can be factorized into the product of two
independent one-dimensional partition functions, we will first study the one-dimensional
problem and then we will come back to the original two-dimensional case.

The Green function of the random walk, given by the Laplace transform of the partition
function Z, in the one-dimensional case is the solution of the differential equation(−∂2

x + m2 + W(x)
)
G(x, x0; m2) = δ(x − x0) (5)

with the additional condition that it vanishes at infinity. The above differential equation can
be solved by using standard methods (see, for example, [11]). Here we focus our attention
on the solution given by

G(x, x0; m2) = e−m|x−x0| + F(m, b, T )e−m(x+x0)

2m
(6)

for x, x0 > b where all informations about the potential are encoded into the functionF .
As in the one dimensional case, there exists a critical temperatureTc such that forT < Tc

adsorbtion behaviour is observable. However, for

|T − Tc| → 0 m2 6 N−1 x, x0 � b

the functionF can be cast in the following universal form [1, 12]:

F = 1 − c/m

1 + c/m
(7)

wherec ∝ (T −Tc). Since we are interested in the universal behaviour of the random walk
chains, we may let at this pointb → 0 and consider the Green function (6) with the above
function F as meaningful expressions for anyx, x0 > 0. This obviously implies that we
are not concerned, from now on, with a microscopic analysis of the interaction, much like
in the spirit of theS-matrix approach for the particle models.

Here we note the following limits:

(a) for c → +∞, the functionF → −1 and the Green function becomes

G(x, x0; m2) = e−m|x−x0| − e−m(x+x0)

2m
.

This limit corresponds to thehard-wall behaviour forx, x0 far away from the boundary.
(b) for c → 0, instead we have

G(x, x0; m2) = e−m|x−x0| + e−m(x+x0)

2m
.

This allows us the identification of the pointc = 0 in this description as thecompensation
point of the random walk with boundary.

Finally, it is important to note that the Green function (5) of the one-dimensional random
walk can be also obtained as solution of thefree differential equation in one-dimension [7](−∂2

x + m2
)
G(x, x0; m2) = δ(x − x0) (8)

but with the interaction incorporated in the boundary condition

∂x G(0, x0; m2) = c G(0, x0; m2) . (9)

Once the solution of the one-dimensional case has been obtained, the Green function of
the two-dimensional random walk can be computed by using Fourier transform as

G(r, r0; m2) =
∫ +∞

−∞

dk

2π
eik(y−y0) G(x, x0; m2 + k2) (10)
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whereG(x, x0; m2 + k2) satisfies the differential equation (5) and is given by (6) and (7)
with the substitutionm2 → m2 + k2. This integral can be cast in the suitable form

G(r, r0; m2) =
∫ ∞

0

dθ

2π
eim(y−y0) sinhθ

(
e−m|x−x0| coshθ + Ŝ(θ, m, c) e−m(x+x0) coshθ

)
(11)

where

Ŝ(θ, m, c) = coshθ − c/m

coshθ + c/m
. (12)

From equations (8) and (9) satisfied by the one-dimensional Green function, it is simple to
derive the differential equation satisfied by the above one(−1r + m2

)
G(r, r0; m2) = δ(r − r0) (13)

supplied with the boundary condition

∂xG(r, r0; m2)
∣∣
x=0 = c G(r, r0; m2)

∣∣
x=0 . (14)

Note that the above equations are those satisfied by the two-point correlation function for
the Euclidean massive boson with the action

S[ϕ] =
∫

dx dy

{
θ(x)

(
1

2
(∇ϕ)2 + m2

2
ϕ2

)
+ c

2
δ(x)ϕ2

}
(15)

whereθ(x) is the Heaviside distribution.

3. The quantum field theory approach

The aim of this section is to show that there exists a one-to-one correspondence between the
problem of the two-dimensional random walk with a boundary near the compensation point
and a quantum field theory of a bosonic fieldϕ with a defect line. In particular, we will
show that the purehard-wall situation in the random walk (T → ∞) is described in terms
of a totally reflectivedefect in the quantum field theory model, while thecompensation
point (T = Tc) of the random walk corresponds to atotally transmittingdefect, provided
that the (classically) forbidden negative half-line is mirrored in the positive axis.

In order to establish this correspondence, the first step is to associate with each chain
of the random walk problem a trajectory of the particle fieldϕ described by the quantum
field theory†. The second step consists in solving a combinatorial problem arising from
the counting of the configurations. To this end, it will be convenient to consider two
copies of the random walk problem, defined on the left and right sides of the boundary,
respectively. The two copies are subjected to the same potential well and share the same
temperature. In this picture, the boundary may be treated as a defect line. Note that, since
at the compensation pointthe behaviour of the random walk is like that in the absence
of a boundary, this corresponds, in the two-copy scheme, to trajectories that start, e.g.,
from the right side of the boundary and end on the left side of it or vice versa. In other
words, thecompensation pointis mapped into thepure transmittingbehaviour of the defect
line. Conversely, thehard-wall limit of the random walk corresponds topurely reflecting
scattering processes at the defect line.

Let us formulate this mapping more precisely. Consider the following action:

S[ϕL, ϕR] = S[ϕL] + S[ϕR] (16)

† In the context of polymer physics, this interpretation has been proposed in [3].
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where

S[ϕR] =
∫

dx dy

{
θ(x)

(
1

2
(∇ϕR)2 + m2

2
ϕ2

R

)
+ c

2
δ(x)ϕ2

R

}
and

S[ϕL] =
∫

dx dy

{
θ(−x)

(
1

2
(∇ϕL)2 + m2

2
ϕ2

L

)
+ c

2
δ(x)ϕ2

L

}
.

The fieldsϕL,R are not independent, but are related by the equation

ϕR(y, x) = ϕL(y, −x) . (17)

The equations of motion associated with the action (16) are given by

θ(x)
(−∇x + m2

)
ϕR = 0

θ(−x)
(−∇x + m2

)
ϕL = 0

∂x (ϕR − ϕL)|x=0 = c (ϕR + ϕL)|x=0

ϕR(y, 0) = ϕL(y, 0)

(18)

where the last equality comes from equation (17). Now we are in the position to see that
this set of equations are the Euclidean version of those solved by Bray and Moore in [13],
who computed the Green function (11), and by Delfinoet al for the problem of the free
relativistic massive boson with adefect line [14]. As proved in [14], the dynamics of
the massive boson with a defect line is constrained by the integrability conditions and is
completely encoded into a set of transmission and reflection amplitudes associated with the
scattering processes of the particle hitting the defect (figure 1). Their explicit expressions
are given [14] by

T (β, c) = sinhβ

sinhβ + ic/m

R(β, g) = − ic/m

sinhβ + ic/m

(19)

whereβ is now the rapidity variable defined through the identity

(E, p) = (m coshβ, m sinhβ).
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Figure 1. The particle hits the defect line and is scattered according to the
reflection and transmission amplitudes.

The remaining part of this paper will be devoted to the computation of the two-point
correlation function of the fieldϕ in the presence of the defect line and to showing that this
quantity gives rise to the Green function (11) of the random walk problem.
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The correlation functions of the bosonic fieldϕ can be computed by using the form
factor approach for the integrable models [15, 16]. This can be done conveniently by
considering the model defined in a geometry where the boundary or the defect are placed
at t = 0. In this geometry, the boundary or defect line are promoted to quantum operators
which act on the vacuum of the bulk quantum theory, whereas the matrix elements of the
fields remain those given in the bulk case.

The form factors come from the insertion, in the correlation functions of a given operator
O(r), of a complete set of asymptotic states

|θ1 · · · θn〉 = A†(θ1) · · ·A†(θn)|0〉
in such a way that for the time-ordered product of two such operators we have

〈0|O(r2)O(r1)|0〉 =
∞∑

n=0

1

n!

∫
dθ1 · · · dθn

(2π)n
|FO(θ1, . . . , θn)|2

× exp

[
im(y2 − y1)

n∑
i=0

sinhθi − im|t2 − t1|
n∑

i=0

coshθi

]
.

The form factors are defined by

FO(θ1, . . . , θn) = 〈0|O(0)|θ1 · · · θn〉 .

In our case, the creation and annihilation operators of the particle states satisfy the usual
bosonic commutation relations[

A(θ), A†(β)
] = 2πδ(θ − β)

and this drastically simplifies the calculation of the form factors. In fact, for the fieldsϕL,R

we have

〈0|ϕ(0)|θ1 · · · θn〉 = 1√
2
δn,1 (20)

while all the other non-vanishing form factors can be computed by using Wick’s theorem
based on the algebra of the operatorsA(θ) andA†(θ). With the above matrix elements, the
Euclidean correlation function in the bulk is given by

〈0|T [
ϕ(y, t)ϕ(y0, t0)

] |0〉E =
∫ ∞

0

dθ

2π
e−m|x−x0| coshθ+im(y−y0) sinhθ (21)

where on the right-hand side we have set it = x. Let us now consider the problem of
computing correlation functions in the presence of the defect line. By considering the
scattering processes as occur at the defect line in their crossed channels (figure 2(a), 2(b)),
we need the new amplitudes given by

T̂ (θ, c) = T ( 1
2iπ − θ, c) = coshθ

coshθ + c/m

R̂(θ, c) = R( 1
2iπ − θ, c) = −c/m

coshθ + c/m
.

(22)

The computation of the correlation functions in presence of the defect operatorD can be
performed by using the equations

〈ϕ(y1, t1) · · ·ϕ(yn, tn)〉 = 〈0|T [ϕ(y1, t1) · · ·D · · ·ϕ(yn, tn)]|0〉
〈0|D|0〉
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Figure 2. (a) The process of transmission with the defect line at it = x = 0. (b) The process
of reflection with the defect line at it = x = 0.

where the matrix elements of the operatorD are given [14] by

〈β|D|θ〉 = 2πT̂ (β, c)δ(β − θ)

〈β1, β2|D|0〉 = 2πR̂(β, c)δ(β1 + β2)

and〈0|D|0〉 = 1.
There are two cases to consider: the first case is when the two operatorsϕ are across

the defect line and the second one is when both fields are located on the same side with
respect the defect line. With the Wick rotation it = x and the defect line placed atx = 0,
in the first case we have

〈0|ϕ(y, x)D ϕ(y0, −x0)|0〉E =
∫ ∞

0

dθ

2π
e−m(x+x0) coshθeim(y−y0) sinhθ T̂ (θ, c) (23)

whereas in the second case

〈0|ϕ(y, x)ϕ(y0, x0) D|0〉E =
∫ ∞

0

dθ

2π

(
e−m|x−x0| coshθeim(y−y0) sinhθ

+e−m(x+x0) coshθeim(y−y0) sinhθ R̂(θ, c)
)
. (24)

The sum of the two contributions

G(r, r0; m2) = 〈0|ϕ(y, x)D ϕ(y0, −x0)|0〉E + 〈0|ϕ(y, x)ϕ(y0, x0) D|0〉E (25)

is exactly the required Green function (11).
Note that there is another way to compute the same quantity: in fact, one could mirror

the left half planeab initio to the right one and consider the transmission amplitude as if
it was a sort of reflection amplitude. One can use this observation in order to define the
function

K(θ) = R̂(θ) + T̂ (θ) (26)

which together with its crossed counterpart defined as

K(θ) = R
(

1
2iπ − θ

)
(27)

satisfy all the conditions (boundary Yang–Baxter, boundary unitarity and boundary cross-
unitarity) a boundaryS-matrix should fulfill [2].

It is thus possible to define the boundary state at the Euclidean timex = 0:

|B〉 = exp

[
1

2

∫ +∞

−∞

dθ

2π
K(θ)A†(−θ)A†(θ)

]
|0〉 (28)
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by which we may rewrite our Green function as

G(r, r0; m2) = 〈0|ϕ(y, x)ϕ(y0, x0)|B〉E . (29)

4. Concluding remarks

Although the original problem of the random walk near the compensation point is defined in
half-space, it has been convenient to formulate the dynamics in terms of two copies defined
for x > 0 andx < 0 with appropriate boundary conditions. In particular, it has been possible
to identify the transmission amplitude of the defect line model with the compensative role
of the potential in the random walk problem and the reflection amplitude of the defect line
with thehard-wall limit. For a generic temperature, the dynamics is ruled by an overlapping
of the two contributions, as shown in equation (25).

Note that the quantum field theory with action (15) could have been solved directly by
using the equations for the boundaryS-matrix [2]. Indeed, once the expansion of the field
ϕ for x > 0

ϕ(x, t) = 1√
2

∫
dθ

2π

[
A(θ)e−im(t coshθ−x sinhθ) + A†(θ)eim(t coshθ−x sinhθ)

]
(30)

is inserted into the boundary condition

∂xϕ|x=0 = c ϕ|x=0 (31)

we have the equation

B A†(−θ) = R(θ)B A†(θ)

where

R(θ) = sinhθ − ic/m

sinhθ + ic/m
(32)

and B is the boundary operator. The reflection amplitudeR(θ) can be used to define the
boundary state (28) and the Green function (29). However, by using this approach, the
different role played by the transmission and reflection amplitudes of the quantum defect
line would have been missed.

As a last remark, it is worth mentioning that the action (15) has been extensively
studied in the context of phase transitions near surfaces in [13, 17], where it describes the
high-temperatureLandau–Ginzburg Lagrangian for a magnetic system with a boundary.
Its validity is restricted by the occurrence of a surface phase transition forc < 0: high-
temperature then means temperature higher than the surface critical temperature, which is
τs = 0 (i.e. Ts = Tc) if c > 0 andτs = |c|2 if c is negative. Note that these limits are those
mentioned after equation (7) and have also been discussed in the context of boundary (or
defect) scattering amplitudes in [14]. In the latter context, the poles ofK(θ) for τ 6 τs

simply imply spontaneous emission of pairs of particles from the boundary, a condition that
destroys the stability of the system.
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